

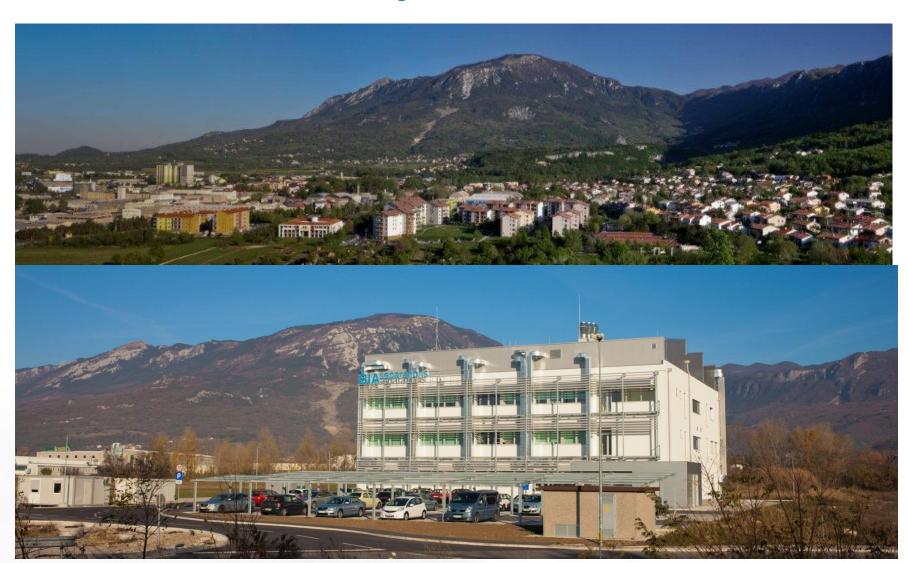
Lidija Urbas, PhD lidija.urbas@monoliths.com





### Outline

- BIA Separations
- Chromatography
  - Monolithic Chromatography
  - Design of monolithic columns
- DSP applications
- PAT columns and applications:
  - Case study: combining DSP and PAT of Adenoviruses
- Conclusions

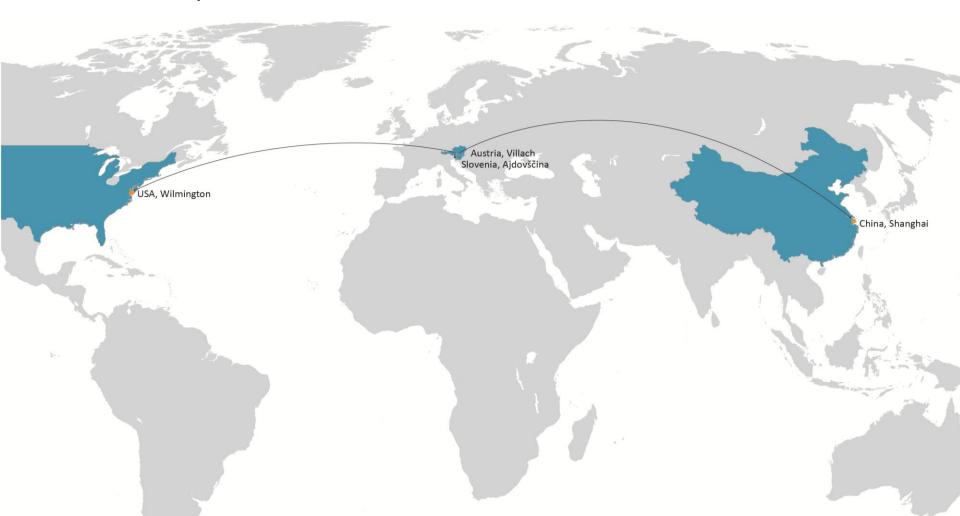









## **Ajdovščina**








### **BIA Separations**

- BIA Separations was founded in September 1998.
- Headquarters in Austria, R&D and Production in Slovenia.



### **BIA Separations**

- BIA Separations was founded in September 1998.
- Headquarters in Austria, R&D and Production in Slovenia.
- BIA Separations USA established in September 2007 sales and tech support office.
- BIA Separations China established in January 2011 sales and tech support office.
- 90 employees world wide
- Main focus: To develop and sell methacrylate monolithic columns & develop methods and processes for large biomolecules separation and purification.





## **BIA Separations – Products and Services**

CIM monolithic columns Contract Research Laboratory

Method development and Technical Support





### Important Milestones

- 2004: First monolith used <u>for the industrial cGMP purification for plasmid DNA</u> at Boehringer Ingelheim provide <u>15-fold increase in productivity</u>
- 2006: First cGMP production of a vaccine (influenza) using CIM<sup>®</sup>
- 2008: OEM Partnership with Agilent Technologies develop and produce analytical monolithic columns for PAT
- In 2011 BIA Separations was awarded by KAPPA-Health as a model SME in the EU Co-funded research projects
- 2012: co-marketing and co-development agreements with JSR and SDK
- 2012: Strong R&D partner in EU projects currently involved in three FP7 projects (http://cordis.europa.eu/)





#### **CERTIFICATIONS & APPROVALS**

- DMF for DEAE, QA and SO3 CIM® monoliths were filed
- FDA
- Partners (Novartis, Boehringer Ingelheim, Octapharma,..)
- ISO 9001: 2008

#### IP

- 4 US patents and their foreign equivalents (more than 50) granted, more pending:
  - CIM® technology and manufacturing
  - Different geometries including scale-up





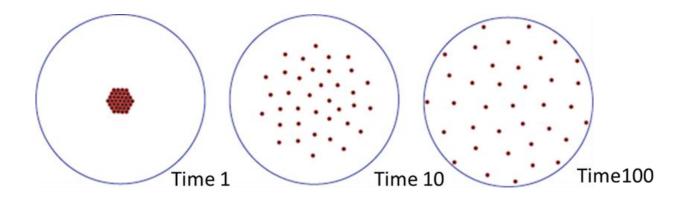
## CIM® for Production of Complex Biomolecules

- First drug purified using CIM<sup>®</sup> monoliths passed CPIII trial (pDNA for gene therapy).
- More than 50 projects in CPI CPIII trials (various Influenza, various Adenovirus, bacteriophages, various IgMs, Inter-alphainhibitors).
- More than 300 projects in pre-clinical trials (Influenza A and B virus (eggs, Vero and MDCK cells), Rabies virus, Rotavirus, AAV, various Adenovirus subtypes, Hepatitis A, Vaccinia, Mulv, MVM, Feline calicivirus, Japanese encephalitis, Crimean-Congo hemorrhagic fever, Hantaan virus, VLP (Hepatitis B, HPV, Influenza, Adenovirus), bacteriophages (Lambda, T4, VDX10, Pseudomonas phage), Tomato and Pepino Mosaic virus, pDNA, IgM, various proteins).





### **Chromatographic Separations**

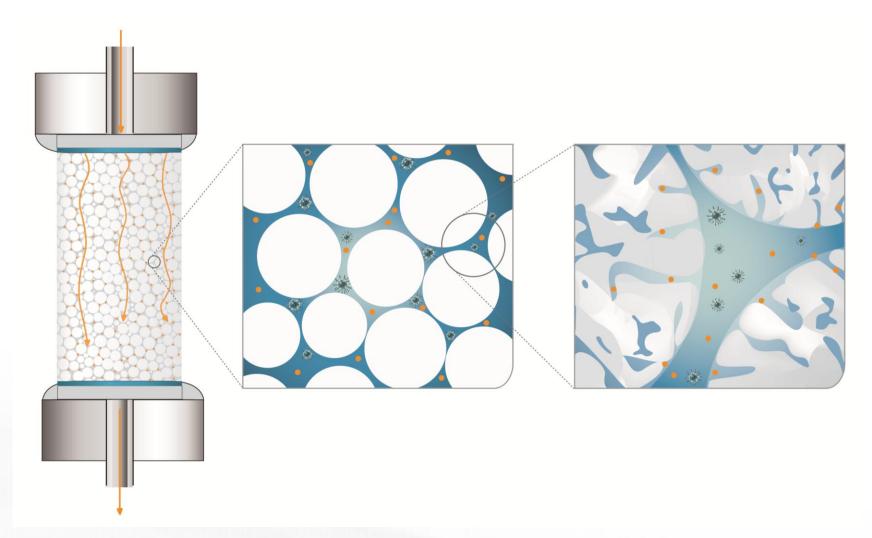

- Principle of Chromatography:
  - Equilibrium between the molecules in the mobile and stationary phase
  - The movement of the solutes (proteins, DNA, virus particles) between the two phases and through the column - MASS TRANSFER
- MASS TRANSFER
  - Diffusion
  - Convection





### Chromatographic separations: mass transfer

 Diffusion - random thermal movement from an area of high concentration to an area of low concentration

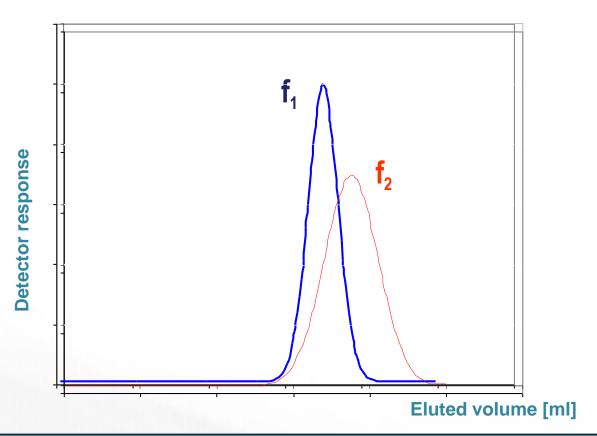



 Convection - movement induced by an external force, such as the flow of buffer, induced by gravity or a pump





## Conventional packed media





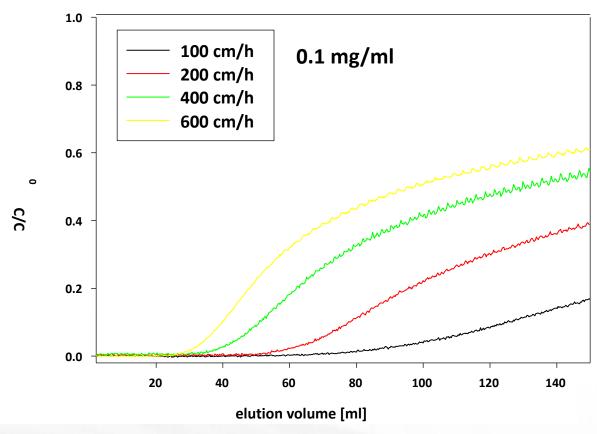



## Diffusion limitations – compromised resolution

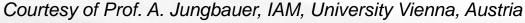
Speed limitation - resolution in linear gradient elution at high flow rate: f2 > f1



Higher the flow rate - wider the peak - and lower the resolution!







## Diffusion limitations: compromised binding capacity

Chromatographic material: Source 30 S

Sample: IgG









### Diffusion limitations: lower flow rates

#### Mass transport within the chromatography column:

- differences in diffusion 'speed'
- low diffusivities slow flow rates in order for the molecule to reach the binding site

| Solute | Size    | K <sub>diff</sub> (cm <sup>2</sup> /s) | Delta <sub>BSA</sub> |
|--------|---------|----------------------------------------|----------------------|
| Sodium | 53 Da   | 1.4 E-5                                | > 479x               |
| BSA    | 66 kDa  | 6.7 E-7                                | = 1x                 |
| IgG    | 150 kDa | 4.9 E-7                                | < 1.4x               |
| IgM    | 1 MDa   | 2.6 E-7                                | < 2.6x               |
| CMV    | 5 MDa   | 1.2 E-7                                | < 5.6x               |
| TMV    | 40 MDa  | 5.0 E-8                                | < 13.4x              |
| DNA    | 33 kbp  | 4.0 E-9                                | < 167x               |

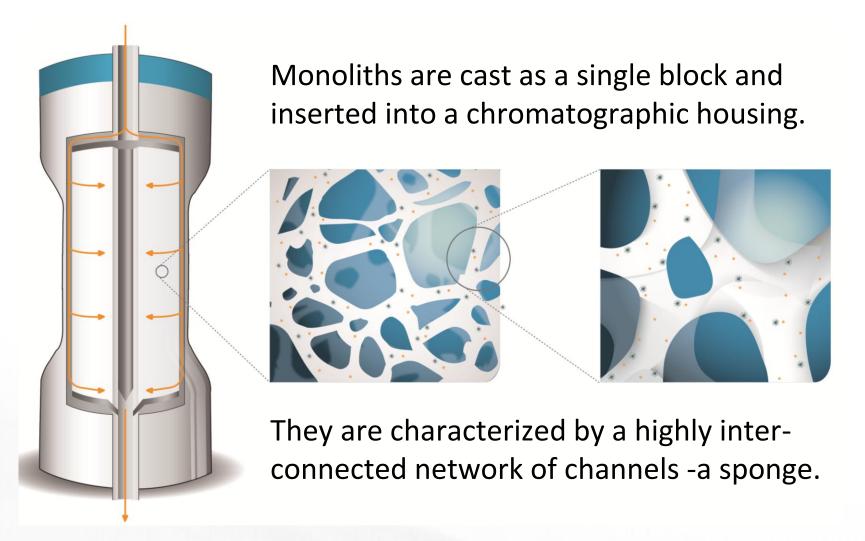
Diffusivities of some of the representative molecules (BSA normalized). BSA = Bovine Serum Albumin, CMV = Cucumber Mosaic Virus, TMV = Tobacco Mosaic Virus.





### Molecule Size: Surface Accessibility




| Molecule  | nm        |  |
|-----------|-----------|--|
| Proteins  | 1-3       |  |
| IgM       | 25        |  |
| Plasmids  | 150-250   |  |
| Rotavirus | 130       |  |
| Poxvirus  | 200 x 500 |  |
| T4        | 220 x 85  |  |

Many plasmids and viruses are larger then pores, which dramatically reduces the binding capacity.

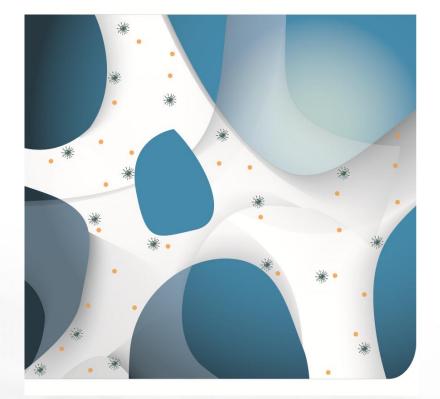




### Monoliths – convection enhanced mass transport



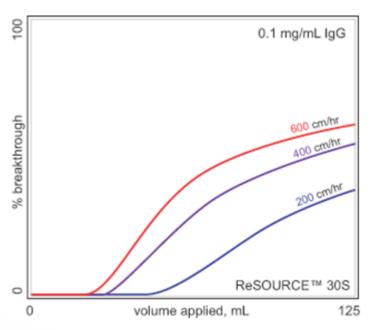




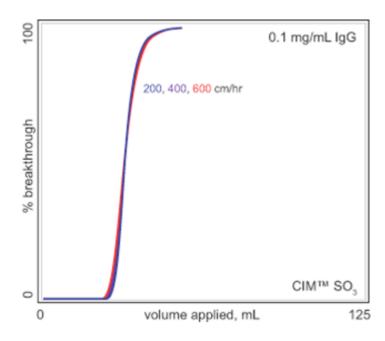

### Monoliths – convection enhanced mass transport

 Binding sites are situated inside the channels – no dead end pores – no diffusion limitations – same performance at lower and at higher flow rates

• Channels are large (1-2 μm) - optimal for molecules like viruses, virus-like particles and DNA to flow through the channels and bind to the binding


sites



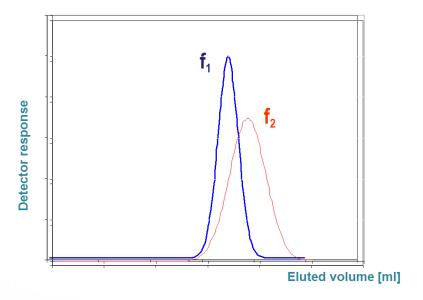




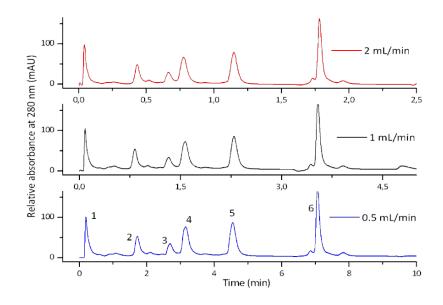

## Mass transport within the chromatography column – consequence of convection



The dominating factor is the low efficiency of diffusive mass transport, which manifests as decreasing capacity with increasing flow rate.



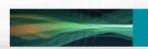

The fact that the curves overlay illustrates independence from flow rate, which translates into better reproducibility across process scales, as well as faster operation.






## Mass transport within the chromatography column – consequence of convection




Particle based column – due to diffusion limitations the efficieny of the column is affected by higher flow-rate resulting in peak broadening.



HPLC (with an analytical monolithic column) separation of a mixture of 6 proteins at 3 different flow rates.

Demonstrating high efficiency and flow-unaffected resolution.

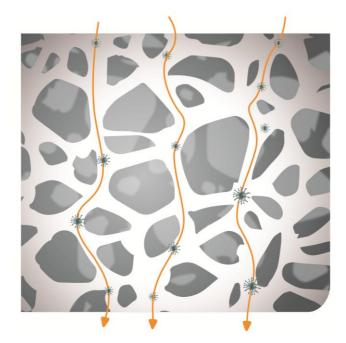




## Size of the biomolecule - influence on the binding capacity

| Solute    | Method       | Monolith  | Particle based |
|-----------|--------------|-----------|----------------|
| BSA       | Ion exchange | 20 – 30   | 75 – 300       |
| IgG       | Affinity     | 10 – 15   | 25 – 60        |
| IgG       | Ion exchange | 20 – 25   | 50 – 150       |
| IgM       | Ion exchange | 20 – 50   | 10 – 50        |
| DNA       | Ion exchange | 10 – 15   | 0.5 - 3        |
| Flu virus | Ion exchange | 10 – 100x | 1x             |

Dynamic binding capacities = the amount of molecule that will bind to the column under practical conditions are expressed in mg/ml column (except for the flu virus).






# What distinguishes monoliths from conventional supports?

#### 1. Structure of the monolith:

- Low pressure drop
- High surface accessibility
- High dynamic binding capacities for large molecules



### 2. Convective transport

Flow independent performance – operating at high flow rates

Suitable for the separation and purification of large biomolecules; pDNA, viruses, proteins.





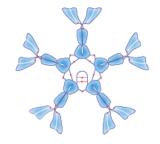

## Main Applications – molecule type

CIM

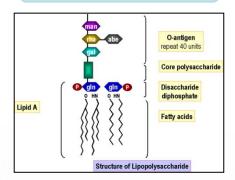
**Columns** 



Viruses & VLPs



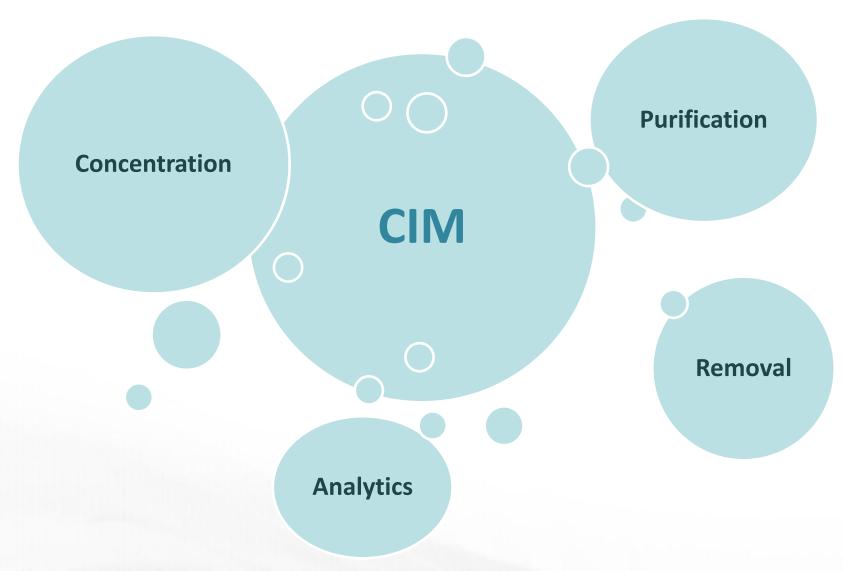

**Plasmid DNA** 




**DNA** depletion






**Endotoxins** 



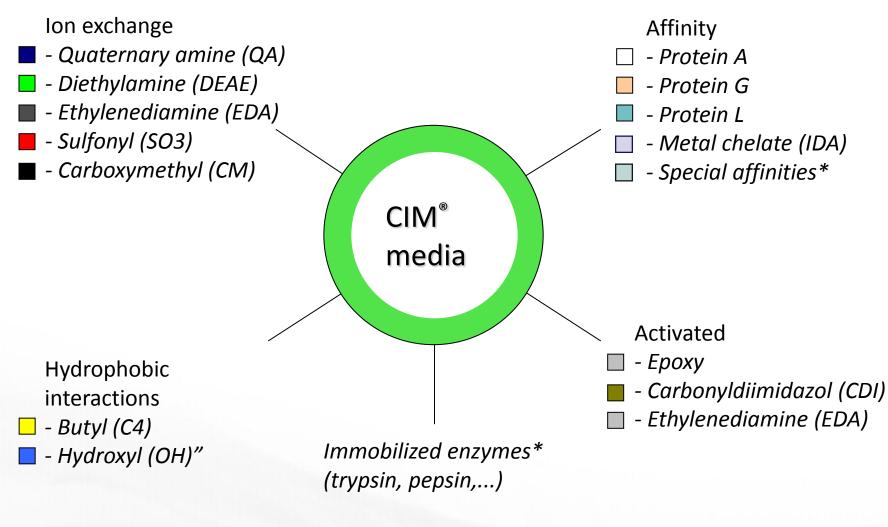




## CIM monoliths application areas



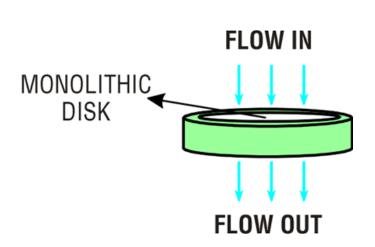




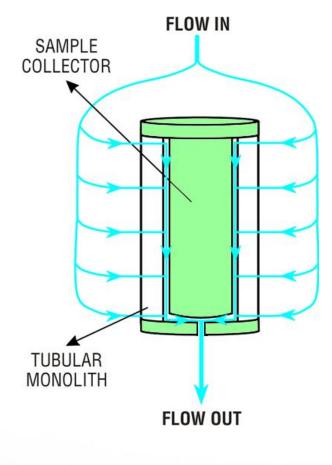

### **CIM Monoliths**

Made of highly cross-linked porous rigid monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate)




### **Available Chemistries**








### Radial flow geometry



axial flow



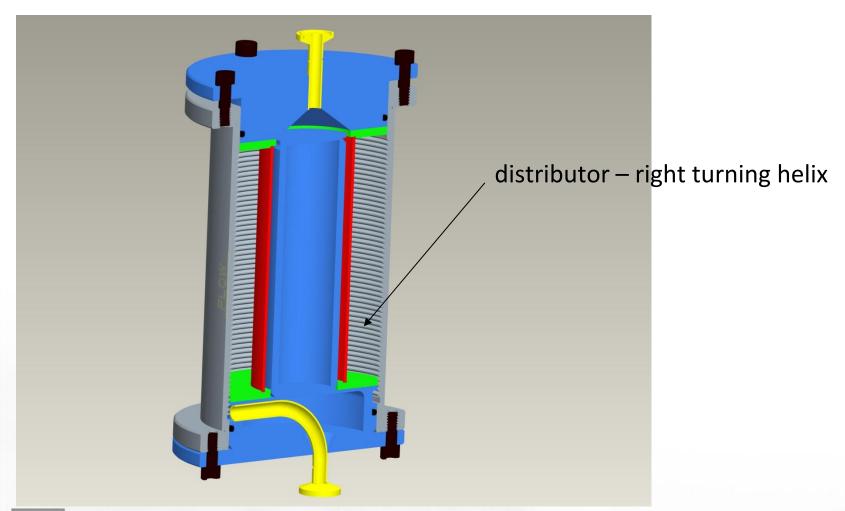
radial flow





## Radial flow geometry

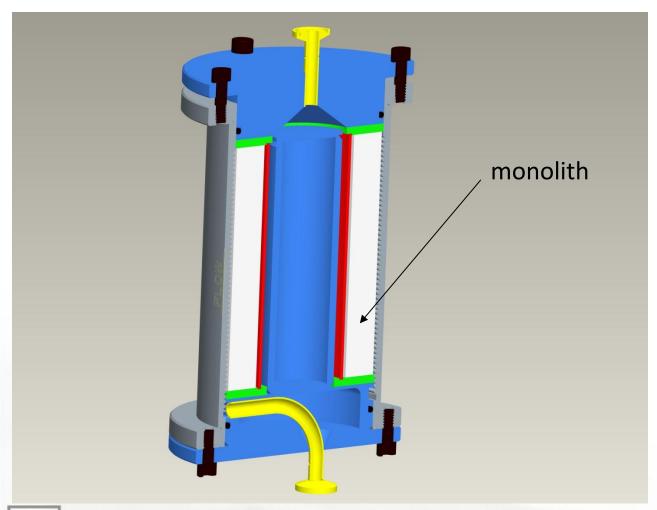





radial flow



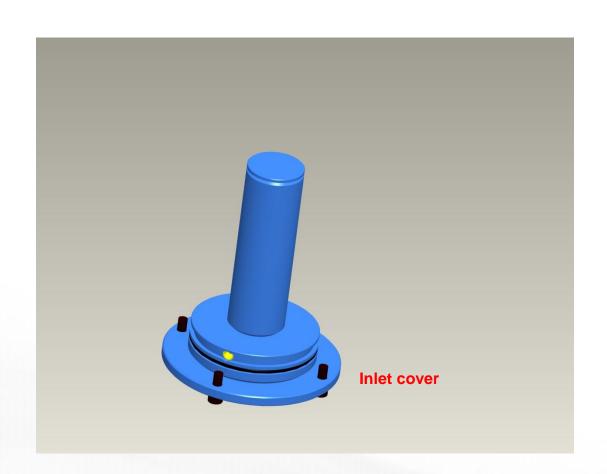



## Distributor – right turning helix







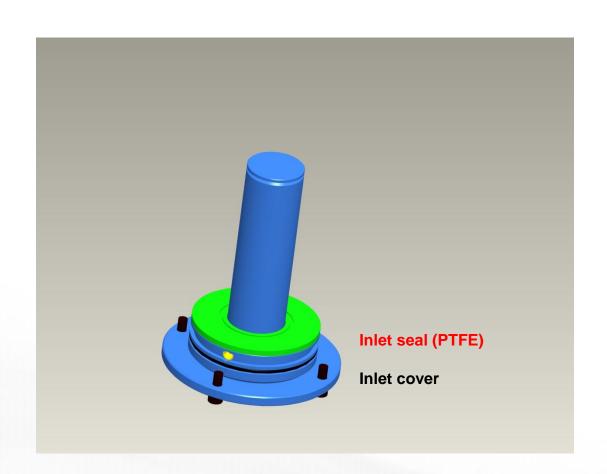

## Distributor – right turning helix







### Constructon of radial flow monolithic columns

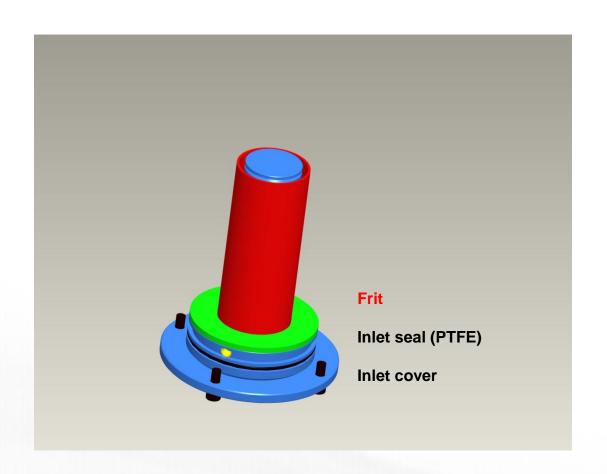









### Constructon of radial flow monolithic columns

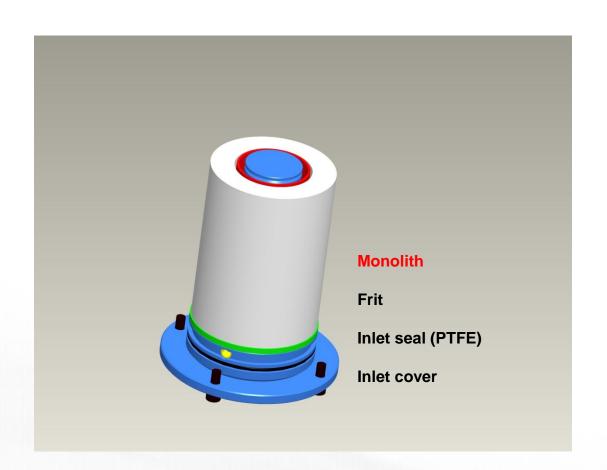









### Constructon of radial flow monolithic columns

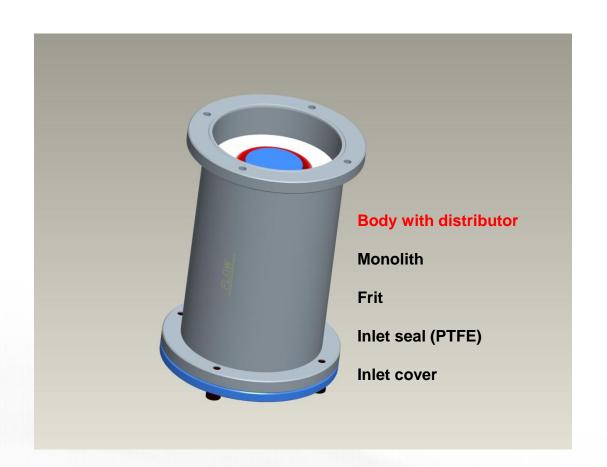









### Constructon of radial flow monolithic column

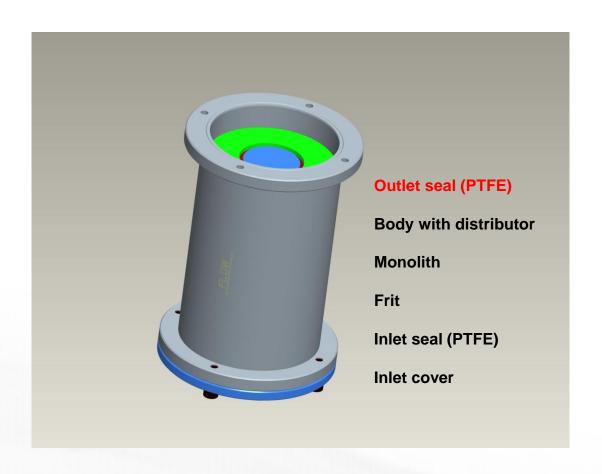









### Constructon of radial flow monolithic column

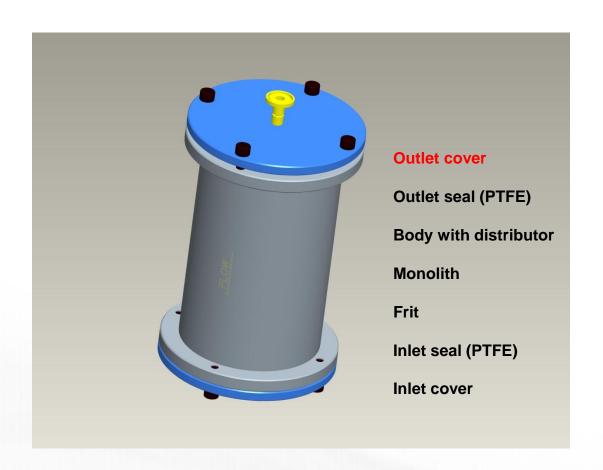









### Constructon of radial flow monolithic columns










### Constructon of radial flow monolithic columns









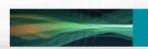
# Advantages of short column layers

### Additional reduction of pressure drop

- Avoid pressure drop becoming limiting

### High throughputs possible

- Take advantage of fast convective mass transfer for high speed separations


### Short residence time

- Avoid unspecific binding, product degradation or minor structural changes of biomolecules

### **Minimal dispersion**

- Sharp peak resolution





# **Avaliable CIM Monolithic Supports**



### CIMmultus (multi-use disposable columns)











# **CIMmultus line**

Concentration
Removal
Purification







## Improved monolith technology

## in innovative multi use disposable housing.









# **Housing Composition**



- Epoxy thermoset composite
- Re-inforced with carbon fibers
- Coated pin-hole free with
  - USP Class VI Parylene C

**Disposable** 

Stainless steel performance characteristics

**GMP** compliant





# Parylene C Coating (CH2-CH2)

- Certifications
  - USP 29 Class VI
  - ISO-10993
  - Applied pin-hole free

### Parylene

- Transparent
- Low dielectric permittivity
- Excellent thermodynamic stability (resistant to the solvent and thermal endurance).
- Biocompatible and biostable as well.
- Parylene C used extensively for coating permanent medical devices implanted in humans

### **NO LEACHABLES**





## CIMmultus column volumes







# CIMmultus – Matching Stainless Steel Performance

|                                 | 1 n         | nL         | 8 r    | nL         | 80           | mL            | 800      | mL         | 8000       | 0 mL       |
|---------------------------------|-------------|------------|--------|------------|--------------|---------------|----------|------------|------------|------------|
| Type of column                  | CIM SS      | CIMmultus™ | CIM SS | CIMmultus™ | CIM SS       | CIMmultus™    | CIM SS   | CIMmultus™ | CIM SS     | CIMmultus™ |
| Max pressure                    | 18 bar      | 18 bar     | 20 bar | 20 bar     | 20 bar       | 20 bar        | 7 bar    | 14 bar     | 7 bar      | 14 bar     |
| Recommended flow rates (mL/min) | 1-5         | 1-5        | 8-60   | 8-60       | 80-240       | 80-240        | 200-1300 | 200-1300   | 2000-10000 | 2000-10000 |
| Max. flow rate (mL/min)         | 16          | 16         | 100    | 100        | 400          | 400           | 2000     | 2000       | 10000      | 10000      |
| Max. operating temperature      | 40 °C       | 40 °C      | 40 °C  | 40 °C      | 40 °C        | 40 °C         | 40 °C    | 40 °C      | 40 °C      | 40 °C      |
| L-t storage conditions          | 20% ethanol |            |        |            |              |               |          |            |            |            |
| Sanitization for IEX, C4 HLD    |             |            |        | 11         | M NaOH for a | at least an h | our      |            |            |            |











Stainless Steel Columns

Single-use Disposable

Bridging the Gap Between







Stainless Steel Columns Single-use Disposable





### Reasons to use in...

### **SINGLE-USE MODE**

- Prevent crosscontamination
- Eliminate cleaning and validation
- Reduce validation cost

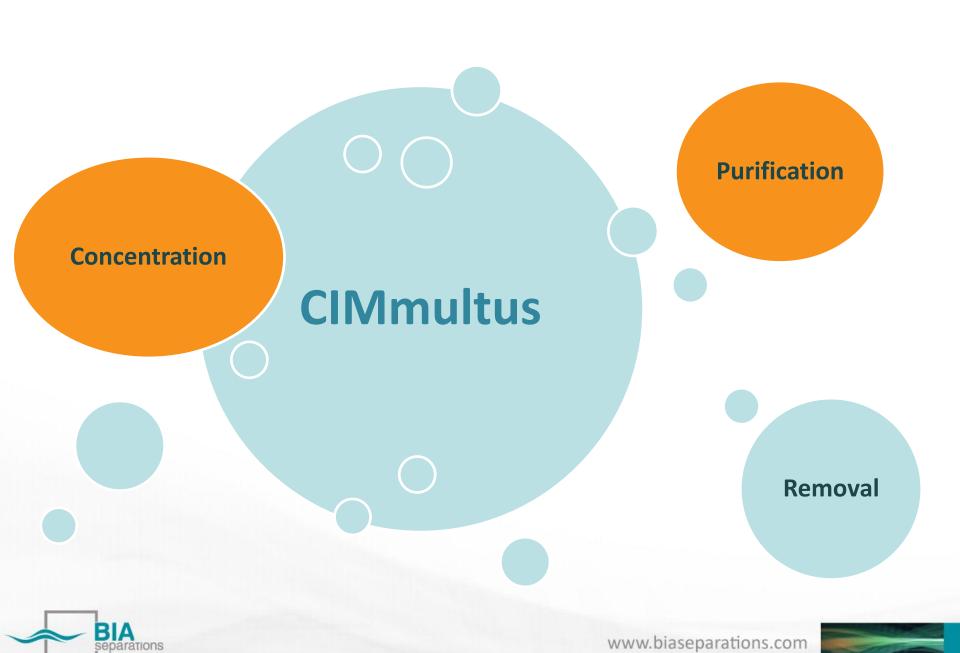
### **MULTI-USE MODE**

- Application allows multiple use
- Longer time between running batches (use-cleanstore-reuse)
- Reduce manufacturing costs

Depends on your application






# **Currently Available Chemistries**

| Chemistry | Description             |
|-----------|-------------------------|
| DEAE      | Weak anion exchanger    |
| QA        | Strong anion exchanger  |
| SO3       | Strong cation exchanger |
| C4 HLD    | Hydrophobic             |
| ОН        | Hydrophobic             |

## Additional chemistries upon request







### Traditional methods

# **CIMmultus**

Particle based chromatography

Membrane chromatography





# Traditional method for virus purification - Ultracentrifugation

- Long process time 10 to 18 hours per run.
- Expensive equipment.
- Multiple runs may be needed for impurity removal.
- Scalabilty is difficult.
- Shear forces are a problem! Sometimes infectivity of viruses can be lost.







Contents lists available at SciVerse ScienceDirect

### Virology

journal homepage: www.elsevier.com/locate/yviro



# CIM<sup>®</sup> monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles

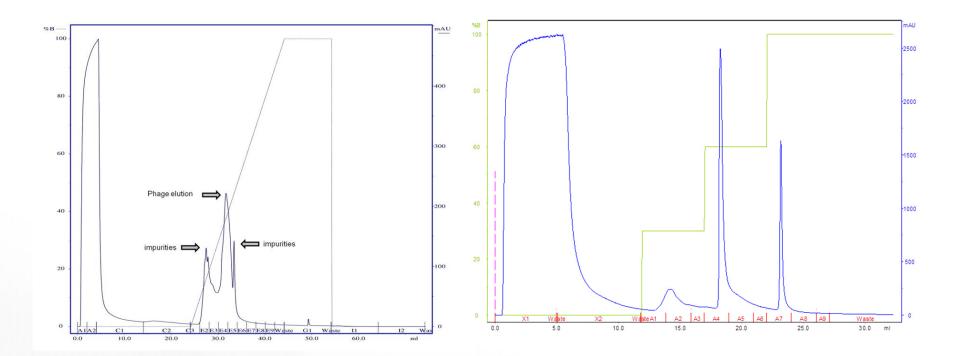
Evelien M. Adriaenssens <sup>a,b,c</sup>, Susan M. Lehman <sup>d</sup>, Katrien Vandersteegen <sup>a</sup>, Dieter Vandenheuvel <sup>a</sup>, Didier L. Philippe <sup>e</sup>, Anneleen Cornelissen <sup>a</sup>, Martha R.J. Clokie <sup>e</sup>, Andrés J. García <sup>d</sup>, Maurice De Proft <sup>b</sup>, Martine Maes <sup>c</sup>, Rob Lavigne <sup>a,\*</sup>





<sup>&</sup>lt;sup>a</sup> Katholieke Universiteit Leuven, Laboratory of Gene Technology, Kasteelpark Arenberg 21-b2462, 3001 Heverlee, Belgium

<sup>&</sup>lt;sup>b</sup> Katholieke Universiteit Leuven, Division of Crop Biotechnics, Willem de Croylaan 42-b2427, 3001 Heverlee, Belgium


<sup>&</sup>lt;sup>c</sup> Institute for Agricultural and Fisheries Research, Unit Plant, Crop Protection, Burgemeester Van Gansberghelaan 96-b2, 9820 Merelbeke, Belgium

d Georgia Institute of Technology, Petit Institute for Bioengineering and Bioscience & Woodruff School of Mechanical Engineering, Atlanta, GA, USA

<sup>&</sup>lt;sup>e</sup> Department of Infection, Immunity and Inflammation, Medical Sciences Building, University of Leicester, PO Box 138, Leicester LE1 9HN, UK

# Purification method development

- Individual methods developed for a particular phage,
- Linear gradients adapted to step gradients.



## Capacity – up to $1.2 \times 10^{12}$ phage particles/ml





## 11 morphologically distinct phages infecting different hosts

Bacteriophages purified with CIM® monolithic columns.

| Phage                         | Phage family (morphotype) | Host spedes              | Host strain            | Growth<br>medium | Loading<br>suspension <sup>a</sup> | Columns used <sup>b</sup>                          | Optimized<br>Buffer<br>set <sup>c</sup> | Elution of pure<br>phage fraction | Capadty (pfu/ml<br>column)                                                                  | Recovery<br>of phage<br>in pure<br>fraction<br>(%) |
|-------------------------------|---------------------------|--------------------------|------------------------|------------------|------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|
| Dickeya phage<br>LIMEstonel   | Myoviridae (Vil-like)     | "D, solani"              | GBBC 2072              | LB               | Undiluted                          | CIM® QA/DEAE<br>disk                               | Tris(a)                                 | 0,6 M NaCl                        | > 7.4 × 10 <sup>12</sup>                                                                    | 99,9                                               |
| Dickeya phage<br>LIME stone2  | Myoviridae (Vil-like)     | "D. solani"              | GBBC 2072              | LB               | Diluted (1/2)                      | CIM® QA/DEAE<br>disk                               | phosp hate                              | 0.6 M NaCl                        | > 5.9 × 10 <sup>11</sup>                                                                    | 70                                                 |
| Staphylo coccus<br>phage ISP  | Myoviridae (Twort-like)   | S aureus subsp<br>aureus | Rosenbach<br>ATCC 6538 | МН               | Undiluted                          | CIM® QA/ <b>DEAE</b><br>disk                       | Tris(a)                                 | 0,8 M NaCl                        | > 2.9 × 10 <sup>11</sup>                                                                    | 35-65                                              |
| Pseudomonas<br>phage ΦE2005-A | Myoviridae (PB1-like)     | P. aeruginosa            | EAMS2005-A             | 25% TSB          | Diluted (1/1)                      | CIM® QA-8 f                                        | Tris(a)                                 | 0.25 M NaCl                       | $1.3\times10^{11}$                                                                          | 40-70                                              |
| Pseudomonas<br>phage ФPaer14  | Myoviridae (PB1-like)     | P. aeruginosa            | Paer14                 | 25% TSB          | Diluted (1/1)                      | CIM® QA-8 f                                        | Tris(a)                                 | 0,25 M NaCl                       | $1.3\times10^{11}$                                                                          | 40-70                                              |
| Pseudomonas<br>phage ФE2005-C | Myoviridae (PB1-like)     | P. aeruginosa            | EAMS2005-C             | 25% TSB          | Diluted (1/1)                      | CIM® QA-8 f                                        | Tris(a)                                 | 0,25 M NaCl                       | $1.3\times10^{11}$                                                                          | 40-70                                              |
| Pseudomonas<br>phage ФM4      | Myoviridae (KPP10-like)   | P. aeruginesa            | M4                     | 25% TSB          | Diluted (1/1)                      | CIM® QA-8 f                                        | Tris(a)                                 | 0.56 M NaCl                       | $1.3\times10^{11}$                                                                          | 40-70                                              |
| Burkholderia<br>phage Phi208  | Podoviridae               | B, thailanden sis        | DW503                  | LB               | Dialyzed                           | CIM® QA disk                                       | Tris(b)                                 | 0,3 M NaCl                        | 5,0 × 10 <sup>9</sup>                                                                       | 70                                                 |
| Pseudomonas<br>phage Ф15      | Padoviridae (T7-like)     | P. putida                | PpC1                   | LB               | Diluted (1/2)                      | CIM® QA/DEAE<br>disk                               | Tris(a)                                 | 0,3 M NaCl                        | 2.4×10 <sup>11</sup>                                                                        | 87                                                 |
| Pseudomonas<br>phage @Paer4   | Padoviridae (IIJZ24-like) | P. aeruginosa            | Paer4                  | 25% TSB          | Dilluted (1/1)                     | CIMac <sup>TM</sup> QA;<br>CIM <sup>®</sup> QA-8 f | Tris(a)                                 | 0.3 M NaCl                        | Ac QA: 5 × 10 <sup>9</sup> to<br>1 × 10 <sup>10</sup><br>QA-8f:<br>> 1.3 × 10 <sup>11</sup> | 40-70                                              |
| Pseudomonas<br>phage IIIZ19   | Padoviridae ( φKMV-like)  | P. aeruginasa            | PAO1                   | LB               | Diluted 1/2)                       | CIM® QA/DEAE<br>disk                               | Tris(a)                                 | 0,6 M NaCl                        | $>3.5\times10^{12}$                                                                         | 70                                                 |

<sup>&</sup>lt;sup>a</sup> Undiluted: lysates were loaded; diluted: lysates were diluted in the corresponding loading buffer; dialyzed: phage suspension dialyzed against corresponding loading buffer.

Adriaenssens et al./Virology 434 (2012) 265-270





b When multiple columns were tested, the best column for purification is in bold.

<sup>&</sup>lt;sup>6</sup> Tris(a) and Tris(b) buffers differ in composition as described in the materials and methods section.

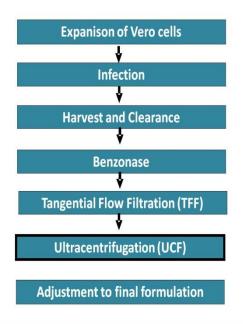
d Rodney Donlan, CDC Biofilm Lab, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA.

# Monoliths vs centrifugaton

### **Ultracentrifugation with CsCl**

- Good yields, but the volume of loaded suspension of a bacteriophage is constricted.
- Equal purity (SDS determined).
- Layering of CsCl gradient is a time consuming process, followed by centrifugation step that last for 1-3 hours, finishing with dialisis that takes several hours.
- Equipment is expensive.
- Amount of CsCl to purify one sample of phage is cheaper than one column.

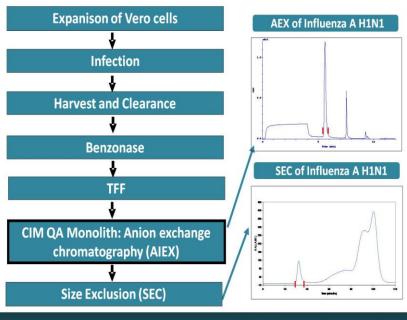
### **Purification with CIM monolith**


- Unlimited volumes of phage can be loaded on each column.
- The CIM monoliths scalability would permit higher titers to be reached when using industrial columns.
- Equal purity (SDS determined).
- Process does not take longer than an hour, and the eluted phage can be stored directly.
- Equipment is expensive but has a broader general applicability.
- But one column can be reused many times making it cheaper after several uses.





# Centrifugation versus chromatography based Flu purification process


### CENTRIFUGATION BASED PURIFICATION PLATFORM



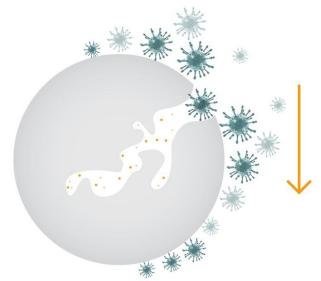
| Infectious virus yield | 11.4 %  |
|------------------------|---------|
| DNA removal            | 99.50 % |
| Protein removal        | 97.4 %  |

separations

### MONOLITH BASED PURIFICATION PLATFORM



| Infectious virus yield | 47.3 %  |
|------------------------|---------|
| DNA removal            | 99.96 % |
| Protein removal        | 97.8 %  |


E. Roethl et al., GreenHillsBiotechnology, BioProcess International, Raleigh, NC, 2009

4-times better yield results in e.g. 4 M doses of vaccine instead of 1 M doses for similar costs of the process = 3 M doses are pure profit, = more vaccine for pandemic



### Particle based media

- Diffusion limitations:
  - Limited flow rates
  - Long process times
- Low dynamic binding capacities for large biomolecules:
  - Low diffusivity constants
  - Too small pore sizes
- Column packing is an issue







# Chromatographic media - membranes

- Dynamic binding capacity (comparable or lower).
- Relatively large void volumes.
- Turbulent mixing between membrane layers in the void volume – eddy dispersion.





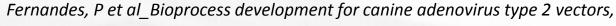
# Evaluation of different supports for purification of live influenza A

| Average values                 | QA monolith                                    | Q membrane                                            | Q porous particles                                   | semi-affinity porous particles                       |
|--------------------------------|------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Virus Recovery                 | 54%                                            | 35%                                                   | 35%                                                  | 27%                                                  |
| DNA Depletion                  | 96%                                            | 95%                                                   | 95%                                                  | 91%                                                  |
| Protein<br>Depletion           | 95%                                            | 94%                                                   | 98%                                                  | 99%                                                  |
| Dynamic<br>Binding<br>Capacity | 10.3 log <sub>10</sub><br>TCID50/mL<br>Support | <b>10.3</b> log <sub>10</sub><br>TCID50/mL<br>Support | <b>9.0</b> log <sub>10</sub><br>TCID50/mL<br>Support | <b>8.4</b> log <sub>10</sub><br>TCID50/mL<br>Support |

Maurer et al., Purification of Biological Products, Waltham, MA/USA, 2007

50% better recovery results in e.g. 1,5 M doses of vaccine instead of 1 M doses, at the same costs of the process = 0,5 M doses are pure profit






# Membrane versus CIM Monolith Canine Adenovirus Type 2

Bioprocess development for canine adenovirus type 2 vectors

P Fernandes<sup>1,2</sup>, C Peixoto<sup>2</sup>, VM Santiago<sup>2</sup>, EJ Kremer<sup>3</sup>, AS Coroadinha<sup>1,2</sup> and PM Alves<sup>1,2</sup>

| Effect of different purification strategies on $\Delta$ E1 CAV-2 yields                                                                                                 |                                                            |                                                               |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| Step                                                                                                                                                                    | Strategy                                                   | Recovery (%)                                                  |  |  |  |
| Clarification                                                                                                                                                           | n<br>Microfiltration<br>Centrifugation and microfiltration | 30<br><b>90</b> ± <b>2</b> <sup>a</sup>                       |  |  |  |
| Purification                                                                                                                                                            | Membrane adsorber  Monolithic column                       | $ \begin{array}{c} 42 \pm 5^{a} \\ 82 \pm 2^{a} \end{array} $ |  |  |  |
| Polishing                                                                                                                                                               | Size exclusion chromatography  Core bead prototype         | 87 ± 6 <sup>a</sup><br>86 ± 9 <sup>a</sup>                    |  |  |  |
| Abbreviation: $\Delta$ E1, E1-deleted. <sup>a</sup> Standard deviation of triplicate assays. The strategies in bold represent the best options to purify CAV-2 vectors. |                                                            |                                                               |  |  |  |







# Membrane versus CIM Monolith Lentiviral vector

INFECTIOUS TITERS, CONCENTRATION FACTORS, AND RECOVERIES OBTAINED AT THE END OF EACH DOWNSTREAM PROCESS STEP, BEFORE AND AFTER OPTIMIZATION

|                       | Before optimization               |      |              | After optimiz                     | zation |                        |
|-----------------------|-----------------------------------|------|--------------|-----------------------------------|--------|------------------------|
|                       | Infectious titer (x $10^7$ IP/ml) | CF   | Recovery (%) | Infectious titer (x $10^7$ IP/ml) | CF     | Recovery (%)           |
| Clarification         |                                   |      |              |                                   |        |                        |
| Centrifugation        | $0.24 \pm 0.01$                   | _    | $71 \pm 6$   |                                   |        |                        |
| Depth-filtration      | $0.25 \pm 0.01$                   | _    | $74 \pm 5$   | $0.30 \pm 0.02$                   | _      | $91 \pm 6^{a}$         |
| Purification (AEXc)   |                                   |      |              |                                   |        |                        |
| Sartobind D MA75      | 2.3±0.1                           | 12.5 | $28 \pm 4$   |                                   |        |                        |
| CIM DEAE              | $6.1 \pm 0.2$                     | 27.1 | $55 \pm 2$   | $8.0 \pm 0.4$                     | 21.7   | $80 \pm 5^{\rm b}$     |
| Concentration (UF/DF) |                                   |      |              |                                   |        |                        |
| Vivaspin 100 KDa      | $4.50 \pm 0.04$                   | 3.4  | $67 \pm 6$   |                                   |        |                        |
| 300 KDa               | $4.5 \pm 0.2$                     | 1.1  | $68 \pm 9$   |                                   |        |                        |
| Vivaflow 100 KDa      | $4.8 \pm 0.1$                     | 1.6  | $72 \pm 1$   |                                   |        | $72 \pm 1^{c}$         |
| Polishing (SEC)       | $0.11 \pm 0.02$                   | _    | $27 \pm 2$   | $0.82 \pm 0.05$                   | _      | $68 \pm 7^{d}$         |
| Overall Recovery (%)  |                                   | 8    |              |                                   |        | <b>36</b> <sup>e</sup> |

Results after optimization are shown for the methods presenting higher yields and chosen to be part of the downstream protocol developed herein due to their advantages.

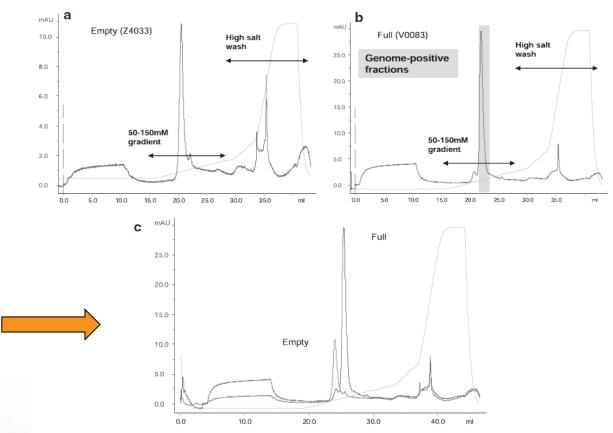
a-dRecovery efficiency of total infectious particles, obtained after optimization of several conditions in each downstream processing (DSP) step: a increase of the flow rate from 50 to 100 ml min<sup>-1</sup>; b immediate five-fold dilution of viral preparations after elution; no optimization was performed in this step due to the high recoveries obtained; d increase of the concentration of the loading material by six-fold; overall recovery obtained after using the techniques that gave the best recoveries in each purification step. The errors correspond to standard deviation (n = 3). CF, concentration factor (in volume).

V. Bandeira et al., Downstream Processing of Lentiviral Vectors: Releasing Bottlenecks, Human Gene Therapy Methods 23:1-9 (August 2012)





# CIM Monolith versus particles and membranes: Adenovirus 5 vector


| Resin          | Particle number by OPU assay (P/mL) | Volume<br>(mL) | Total Particles | Capacity<br>(P/mL of resin) |
|----------------|-------------------------------------|----------------|-----------------|-----------------------------|
| Capto Q        | 3.55E+11                            | 1.7            | 2.04E+11        | 2.09E+11                    |
| CIM disk       | 3.75E+11                            | 1.2            | 2.97E+11        | 9.19E+11                    |
| Fractogel      | 3.05E+11                            | 1.2            | 2.72E+11        | 7.70E+11                    |
| Q Sepharose XL | 2.21E+11                            | 1.3            | 1.70E+11        | 1.70E+11                    |

Reece-Ford et al, Evaluation of different anion-exchange resins for purification of recombinant human Ad5 vectors, poster Cobra





## Separation of empty and full AAV capsid – enabling feature



**FIG. 3.** IEX particle assay. **(a)** Seventy-five microliters of an empty particle AAV8 preparation (lot no. Z4033) was loaded onto a 0.34-ml CIM-QA disk, using FPLC, and eluted with a  $50-150 \, \text{mM}$  salt gradient. The y axis shows the absorbance (mAU) at 280 nm and the x axis the elution volume (ml). The detected conductivity and absorbance are represented by solid light and dark blue lines, respectively. The vertical dashed pink line represents the point of vector injection. **(b)** A full AAV8 vector preparation (lot no. V0083,  $1 \times 10^{12}$  GC) was run under the same binding/elution conditions as used for the empty particle preparation. Fractions were quantified for vector GC content and those fractions containing >99% of the loaded material are indicated (shaded box). **(c)** An overlay of the elution profiles of the empty and full AAV8 vector preparations is shown.

Lock et al., HUMAN GENE THERAPY METHODS: Part B 23:56-64 (February 2012)



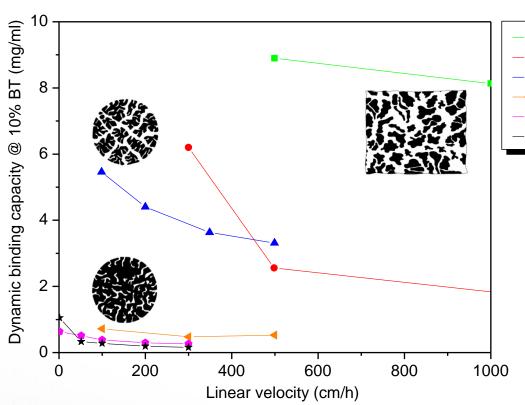


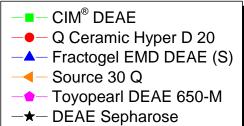
# **Capacities**

| Molecules    | Dynamic binding capacity |
|--------------|--------------------------|
| influenza    | 2 E+12 vp/mL             |
| T7 phage     | 1 E+13 pfu/mL            |
| M13 phage    | 4.5 E+13 pfu/mL          |
| lambda phage | 1 E+13 pfu/mL            |
| PRD1 phage   | 6 E+13 pfu/ml            |
| adenoviruses | 2 E+12 vp/mL             |
| baculovirus  | 2.4 E+11 pfu/ml          |
| pDNA         | 8 mg/mL                  |
| genomic DNA  | 15 mg/mL                 |
| IgM          | 25 – 50 mg/mL            |
| endotoxins   | > 115 mg/mL              |






## Theoretical amount of virus purified per single run


| Column               | virus purified (vp/mL) |
|----------------------|------------------------|
| CIMmultus QA 1 mL    | 1 E+12                 |
| CIMmultus QA 8 mL    | 8 E+12                 |
| CIMmultus QA 80 mL   | 8 E+13                 |
| CIMmultus QA 800 mL  | 8 E+14                 |
| CIMmultus QA 8000 mL | 8 E+15                 |





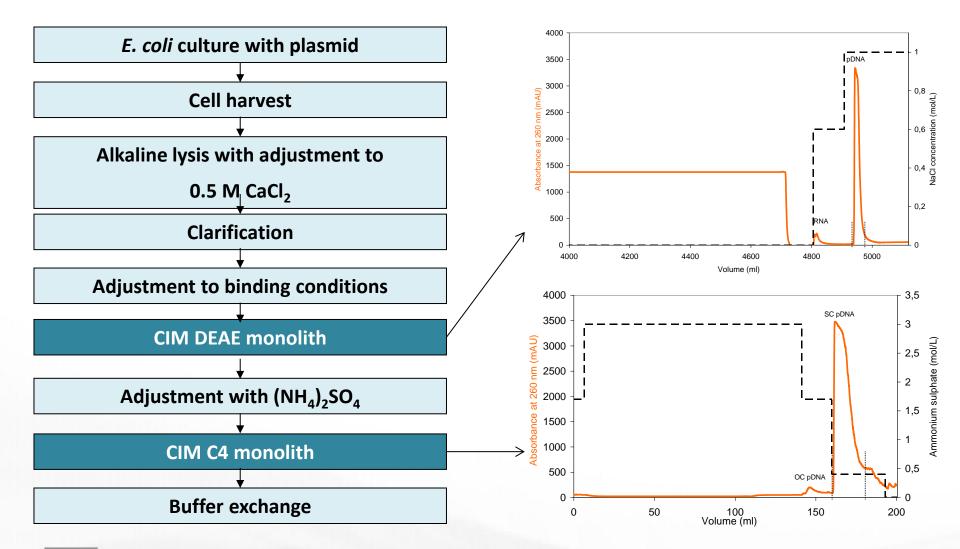
# Plasmid DNA Binding Capacity Using AEC





CIM DEAE binding capacity
= ~8 mg/ml

**Used for CP III trials** 


### Boehringer Ingelheim: "15-fold increase in productivity"

- High binding capacity at relevant flow rates
- High elution concentration pDNA eluted in lower volume (important for SEC!)
- Fast process (no product loss due to oxidative degradation or enzymatic attack)





# Plasmid DNA purification process







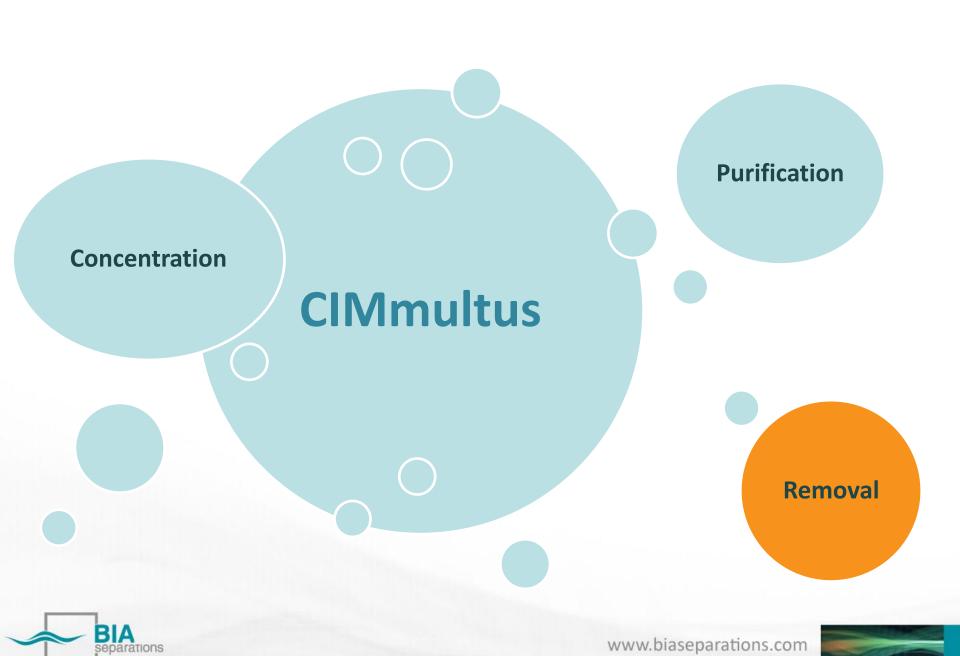

# High Quality pDNA

|                            | Alkaline lysate | CIM DEAE-8 | CIM C4-8 |
|----------------------------|-----------------|------------|----------|
| pDNA (μg/ml)               | 28              | 630        | 300      |
| pDNA (mg)                  | 40              | 38         | 34       |
| Homogeneity (% SC)         | 94              | 95         | 98       |
| Endotoxins (EU/mg pDNA)    | 200             | 12.4       | 1.1      |
| Host cell proteins (μg/ml) | 190             | 30         | 11       |
| gDNA (μg/mg pDNA)          | 20              | 10.3       | 3.4      |
| RNA (μg/ml)                | N.D.            | 0          | 0        |
| Yield (%)                  | 100%            | 95%        | 90%      |

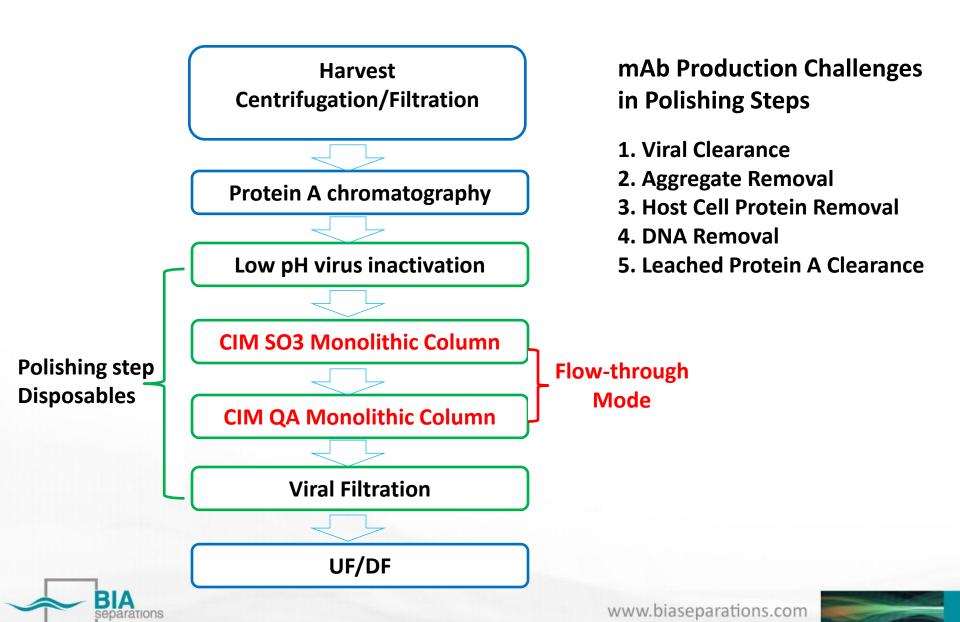
| Process Yield | >80% |
|---------------|------|
| A260/280      | 1.93 |






# Theoretical amount of pDNA purified per single run




| Sizes   | pDNA<br>(g/run) |
|---------|-----------------|
| 1 mL    | 0.006           |
| 8 mL    | 0.048           |
| 80 mL   | 0.480           |
| 800 mL  | 4.8             |
| 8000 mL | 48              |



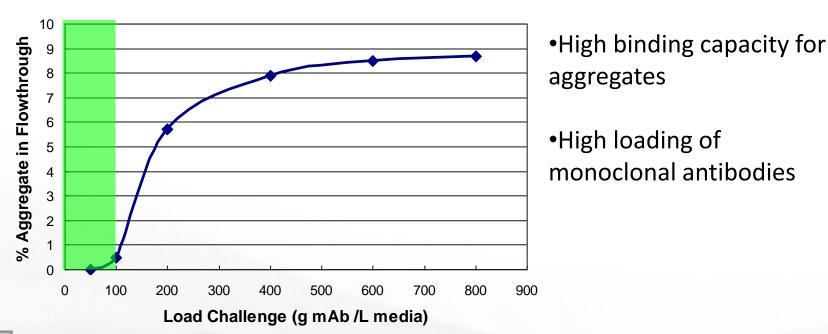




## Proposal process of IgG mAb



## Immunoglobulin G - monoclonal


- Platform purification process consisting of an affinity step (Protein A) and one to two ion-exchange steps.
- The cation-exchange (SO3) step is used for the removal of aggregates.
- Usually, an anion-exchange (QA) step is used for final polishing – DNA and virus removal.





# Aggregates removal on a CIM SO3 column – negative mode

Recent results demonstrate a high efficiency of CIM SO3 monolithic columns for the removal of aggregates in the negative chromatography mode. The same holds for the HCP - recent data.







# HCP and DNA removal on a CIM QA column – negative mode

• HCP and DNA can be efficiently removed by the QA polishing step at various levels of antibody loading – in the negative chromatography step.

| Flow rate<br>(CV/min) | Load challenge<br>(g mAb/L monoliths) | HCP<br>(ppm) | DNA<br>(ppb) |
|-----------------------|---------------------------------------|--------------|--------------|
| 3                     | 100                                   | TLTD*        | <0.8         |
| 15                    | 100                                   | TLTD*        | 1            |
| 3                     | 1000                                  | 10.4         | 0.7          |
| 15                    | 1000                                  | 10.8         | <0.5         |

\*TLTD, too low to be determined





### A Comparison of Microparticulate, Membrane, and Monolithic Anion Exchangers for Polishing Applications in the Purification of Monoclonal Antibodies.

Pete Gagnon, Richard Richieri<sup>a</sup>, Simin Zaidi<sup>a</sup>, Francis Aolin<sup>a</sup>

Validated Biosystems, 240 Avenida Vista Montana, Suite 7F San Clemente, California 92672: Avid Bioservices Inc. 14282 Franklin Avenue, Tustin, California 92780

### Introduction.

Missibrane based anion each magan are being used increasingly for purification of econolisms antibodies. The transition from particle-based union evolutions in driven partly by the sourceplease of membranes and parity by the cost saying associated. with their disposability, however the feature that makes them. functionally repetor is more effective mass transport.

Mine transport is a major contributor to mice evolution binding efficiency, especially for large contrastment such as DNA, endetectes, and stral particles. Finis flows professationly through the mass: between particles—the void volume — in traditional pushed bads, while binding depends on differior of soluter into and out of dead-and power to the mobile phase passes down the colour. The larger the controvings, the slower thair differing constant and the slower the flow rate wont be to allow them to come in contact with binding also halds the poper, DMA in payfor miss explanae efficiency (Table 1, Flours 1). For acceptbilly is another facilities with particle based media, its-called wide-you media yearnily have average pure diameters of about 1000 Å, receiptly the came as a 100 mm vital particle. Anything larger has assess to only the particle runflow, which represent a small fraction of the total ton each major rarities.

Contractive was transport country independently of diffusion. and it consequently independent of solute size. It is also independent of flow rate. This allows union evolution weatherned to askieve good oxposity at high flow rates, however their mass transport efficiency is offset by the fact that each membrane recrecents only a challe observation rather plate, from a until be left between lawers because the pure distribution between lawers in discretization. (https://originatelia.efficiency declines further from turbulent mixture between membrane larger, and elsewhere within the location.

Microfiths are sharpeled and by a nativeric of highly intercenmoded charmels, with dissection remains from 1-5 and 7th apchilecture promits conventive many transport, endowing monolittle with the ability to contain large policies with high efficiency. at high flow rate. In addition, sometime at high plate efficiencles rivaling the best advergentionists probings, and they lask the list but more dramatic pattern was observed with DSA capacity. word volume that players both membranes and microparticles. [1,1] This last feature is temportant because terbulent adults in the void volume (edity dispersion) is a primary cause of band consulting in altro-autographic patentions. This combination of efficient process that sometime should offer higher efficiency

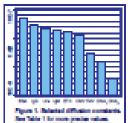
than either membranes or porous particles. This study shalleness that hypothesis with two large, clinically significant contactnumber and objects and TOOK.

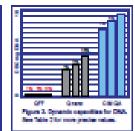
### Materials and methods

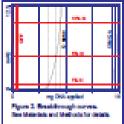
All experiments were conducted on an ARTA \*\* Replace 100: 65F Healthough, DNA, andotrein, bovins serum albumin. (RSA), buffers, and salts were obtained from Sigma. () Septemone " Fact Flow in 1 ml. Hilling " solutions was obtained from GE Hadhors, Strickind \*\* () nano (1 all.) assabrance were obbined from Sertories, CD-69 (A) wondition 0.56 mL (sylub) and 1.5 mL (radial flow), were obtained from RIA (eparation).

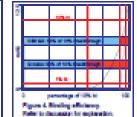
DAA and endotos in binding aspection were determined by condecine describ breakforces studies with 0 Insolut, DAA or endotosin in 0.00 kil Henry dil 7.0. Solutions were membrane thould be a very low diffusion constant, making it a good model. Situred to 0.11 pm before dimensing right; () Fast Flow HTImps were con at 1 milliorisate. Surjoiting () and (TM ()A (axial flow)) spice as shappen were run at ( mL/min. Three (DA) disks were combined in a single housing to give a 1 mL volume. Frush medis (all trees) was used for each experiment.

> To confirm the ability of monoliths to remove DNA from LeG. solutions, \$40 mL of \$11 mg/mL (SAA mixed with \$1.0 mg/mL). protein A-partied according LyG, obtains we applied to a 1.5 ad radial flow OA separable at 60 ad Jude, Specific wars takon at 10 mL intervals. DOOA levels were measured by intro-press. boting, conducted by Southern Research Institute, Ritmangham. AL USA (www.southermosensh.cos).


### Results and Discouries.


Residinguish current for ESIA are shown in Places 1. Dynamic binding aspecifies for endotosin and DACA are stren in Table 1. DOA conscilled are plotted in Floure 3. Combined with the combination of low diffusion constants and narrow pore diameters. conscities for both TSIA and endowin were lowest on the particle based union audiomer. At 1% breakformule, endotocin consulty per mil. of media was more than I times higher on the membrane and more than 13 times higher on the monolith, even though both the latter were operated at a 4-fold bloker flow rate. A studwhich we nearly 10 three higher on the membrane and should 20 three bloker on the monelity.


Assense convenient union explanation, according offer not only higher consoly than membranes but also higher binding efficien-


| Tolder 1. Days            | miles Difference                    | Constants       |
|---------------------------|-------------------------------------|-----------------|
| Bolde                     |                                     | K <sub>ar</sub> |
| 1000                      | 60 KDs                              | 0.71101         |
| egil.                     | 180 604                             | 4.0 (10"        |
| J. Walter                 | 660 KDs                             | 3.3 (10)        |
| gallet<br>Mary            | 960 KDa                             | 2.6 (101        |
| Brokelade                 | 2000                                | 2.1 (10"        |
|                           | S MCN                               | 1.27101         |
| TW                        | 40 MOs                              | 5.0 v104        |
| DNA,                      | COMp                                | 1.09107         |
| DNA,                      | 33.0 Mg                             | 6.0 (10*        |
| CRV Counts<br>TrV Triange | er mensile ribera<br>mensile ribera |                 |

| Table 2. Dynamic | Capacities |      |
|------------------|------------|------|
| Exchanger        |            |      |
| OFF              |            |      |
| 1% M. mgs        | 8.0        | 0.3  |
| DPM: UK          | 12.1       | 0.4  |
| 10% (4           | 14.0       | 0.0  |
|                  |            |      |
| Chanc            |            |      |
| 176 bit, mps     | 30.0       | 5.0  |
| DPM: UK          | 40.4       |      |
| 10% (4           | 40.0       | 7.6  |
|                  |            |      |
| CHICA            |            |      |
| 196 bit, mgs.    | 114.7      | 14.0 |
| DN IA            | 100.1      | 10.1 |
| 10% 00           | 167.3      | 10.4 |
|                  |            |      |
|                  |            |      |





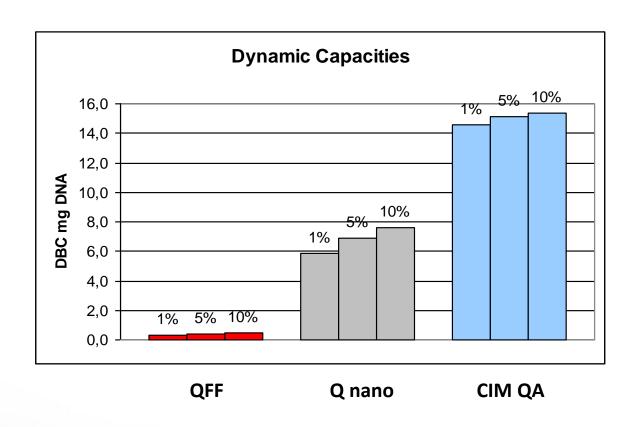




ey. This is illustrated in Figure 1, where the profiles are scaled. to 10% breakformule. The earlier breakformule and shallower. slope of the mandrane curve are consistent with lower binding efficiency. The persons differential from the point where breakthrough you visually detectable to the 10% breakthrough value was calculated. The "no-breakthrough" portion of the securitish curve was \$5% of the 10% breakthrough value, command to only 60% for the membrane. This conversants to 14.5 majorL of no-breakforcesh aspectly for the scondiffs versus 4.8 mg/sd. for the membrane. The presence of LyG distinct impubliSA nemovall by the secondith. DOM levels in all theology were beneath the detection level of the array, about 1 mg/s/L, indicating at least 5 loss of TOCs respond across the entire manula architecture.

This study has important implications for manufacture of thempentir antibodies. Although diffrates particle anion explanators have proven adequate for reducing 196A and wirel contamination to eliminally someonible levels. It is clear that they have done so in settle of their fundamental improportationers for the took. The bisher consulty and efficiency of convention union as showem provides not only better process exprovides but, wors to protendy, lower patient risk in the clinic. According to the reveals of this study, a monolith with a bed volume 10% the size of a oneventional union exchanger could remove 5 times as much 1964. in about the came amount of time. A monolith 10% the size of a conventional authorise could remove 10 these as such 1995 to half the time. Given their large size and slow diffusion counterin, wirel mericales should be expected to behave similarly to 1965. Additional studies are required to confirm this, and to characterine the behavior of assertantes, leached protein A, and host cellprojein. This will be of special interest with the weak-partitioning conditions employed in 3-cisp (protein A lanion exchange) Inc) partitioning procedure, where the low dispersion shareshobition of according should enhance contaminant discrimination.

- 1. Stranger et al. 1001, Adv. Repolem. Phys. Replacings., 76 50 2. Holm et al. 2003, San. Sci. Biologi., 57/71254

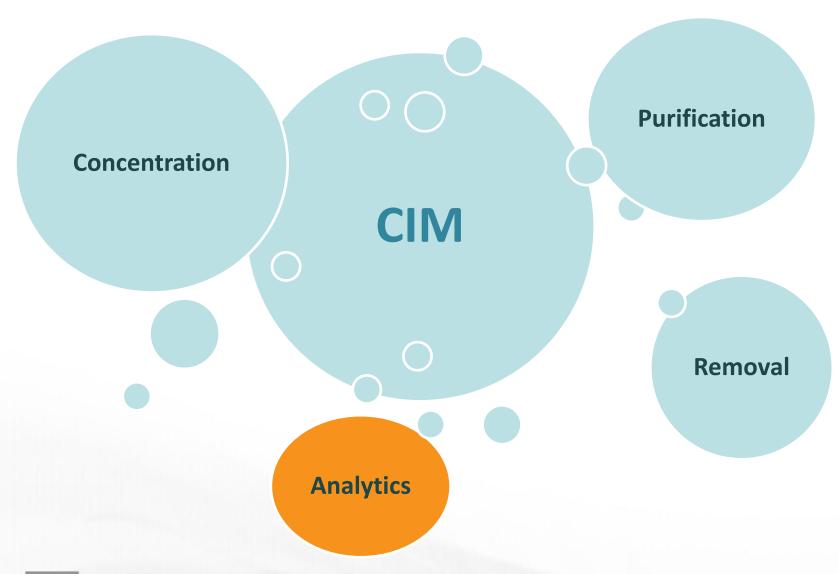

### Admirelation and

Thinks to MIA Separations Guibbl Assets for proving monolithic union explanates to conduct this study. This poster was originally prepented at the DEC World Conference and Reporttion Region, Manualtonath, USA, Ophobar 1-4, 1997, Contactof this poster can be downloaded at www.wildeted.com.





# **Dynamic Binding Capacity for DNA**




Note 50 times higher dynamic binding capacity than particle based resin while operating at 4-fold higher flow rate!





# CIM monoliths application areas





